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band, a mobile hole, and turns the aluminum atom into a fixed negative
ion. Thanks to the holes thus created — at room temperature nearly equal
in number to the aluminum atoms added — the crystal becomes a much
better conductor. There are also a few electrons in the conduction band,
but the overwhelming majority of the mobile charge carriers are positive,
and we call this material a p-type semiconductor (Fig. 4.11(b)).

Once the number of mobile charge carriers has been established,
whether electrons or holes or both, the conductivity depends on their
mobility, which is limited, as in metallic conduction, by scattering within
the crystal. A single homogeneous semiconductor obeys Ohm’s law. The
spectacularly nonohmic behavior of semiconductor devices — as in a rec-
tifier or a transistor — is achieved by combining n-type material with
p-type material in various arrangements.

Example (Mean free time in silicon) In Fig. 4.10, a conductivity of
30 (ohm-m)~! results from the presence of 102! electrons per m? in the con-
duction band, along with the same number of holes. Assume that 4 = 7_ and
My = M_ = m,, the electron mass. What must be the value of the mean free
time t? The rms speed of an electron at 500 K is 1.5- 103 m/s. Compare the
mean free path with the distance between neighboring silicon atoms, which is
2.35-10710m.

Solution Since we have two types of charge carriers, the electrons and the
holes, Eq. (4.23) gives

mo (911073 kg)(30 (ohm-m)~!)
T = =
2Ne2 2102 m=3)(1.6- 10-19 C)2

~53.107 5. (4.28)

The distance traveled during this time is vt = (1.5-10° m/s)(5.3-10" 13 s) ~
8-10~8 m, which is more than 300 times the distance between neighboring sili-
con atoms.

4.7 Circuits and circuit elements

Electrical devices usually have well-defined terminals to which wires can
be connected. Charge can flow into or out of the device over these paths.
In particular, if two terminals, and only two, are connected by wires to
something outside, and if the current flow is steady with constant poten-
tials everywhere, then obviously the current must be equal and oppo-
site at the two terminals.'® In that case we can speak of the current I
that flows through the device, and of the voltage V “between the termi-
nals” or “across the terminals,” which means their difference in electric

13 1tis perfectly possible to have 4 A flowing into one terminal of a two-terminal object
with 3 A flowing out at the other terminal. But then the object is accumulating positive
charge at the rate of 1 coulomb/second. Its potential must be changing very rapidly —
and that can’t go on for long. Hence this cannot be a steady, or time-independent,
current.
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potential. The ratio V/I for some given [ is a certain number of resis-
tance units (ohms, if V is in volts and  in amps). If Ohm’s law is obeyed
in all parts of the object through which current flows, that number will
be a constant, independent of the current. This one number completely
describes the electrical behavior of the object, for steady current flow
(DC) between the given terminals. With these rather obvious remarks
we introduce a simple idea, the notion of a circuit element.

Look at the five boxes in Fig. 4.12. Each has two terminals, and
inside each box there is some stuff, different in every box. If any one of
these boxes is made part of an electrical circuit by connecting wires to
the terminals, the ratio of the potential difference between the terminals
to the current flowing in the wire that we have connected to the terminal
will be found to be 65 ohms. We say the resistance between the terminals,
in each box, is 65 ohms. This statement would surely not be true for all
conceivable values of the current or potential difference. As the poten-
tial difference or voltage between the terminals is raised, various things
might happen, earlier in some boxes than in others, to change the volt-
age/current ratio. You might be able to guess which boxes would give
trouble first. Still, there is some limit below which they all behave lin-
early; within that range, for steady currents, the boxes are alike. They are
alike in this sense: if any circuit contains one of these boxes, which box
it is makes no difference in the behavior of that circuit. The box is equiv-
alent to a 65 ohm resistor.'* We represent it by the symbol ~\AAM and
in the description of the circuit of which the box is one component, we
replace the box with this abstraction. An electrical circuit or network is
then a collection of such circuit elements joined to one another by paths
of negligible resistance.

Taking a network consisting of many elements connected together
and selecting two points as terminals, we can regard the whole thing
as equivalent, as far as these two terminals are concerned, to a single
resistor. We say that the physical network of objects in Fig. 4.13(a) is
represented by the diagram of Fig. 4.13(b), and for the terminals A1A; the
equivalent circuit is Fig. 4.13(c). The equivalent circuit for the terminals
at BB, is given in Fig. 4.13(d). If you put this assembly in a box with
only that pair of terminals accessible, it will be indistinguishable from a
resistor of 57.6 ohm resistance.

There is one very important rule — only direct-current measurements
are allowed! All that we have said depends on the current and electric
fields being constant in time; if they are not, the behavior of a circuit

Figure 4.12.
Various devices that are equivalent, for direct current, to a 65 ohm
resistor.

14 We use the term resistor for the actual object designed especially for that function.
Thus a “200 ohm, 10 watt, wire-wound resistor” is a device consisting of a coil of wire
on some insulating base, with terminals, intended to be used in such a way that the
average power dissipated in it is not more than 10 watts.

(a) 65 ohms

et

28 cm length of No. 40 nichrome wire

(b)

% Ib spool of No. 28 enameled copper
magnet wire (1030 ft)

©)

Two 70 ohm resistors and one 30 ohm
resistor

(d)

0.5 N KClI solution with electrodes of certain
size and spacing
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element may not depend on its resistance alone. The concept of equiva-
lent circuits can be extended from these DC networks to systems in which
current and voltage vary with time. Indeed, that is where it is most valu-
able. We are not quite ready to explore that domain.

Little time will be spent here on methods for calculating the equiv-
alent resistance of a network of circuit elements. The cases of series and
parallel groups are easy. A combination like that in Fig. 4.14 is two resis-
tors, of value Ry and R», in series. The equivalent resistance is

R=Ri+R» (4.29)

A combination like that in Fig. 4.15 is two resistors in parallel. By an
argument that you should be able to give (see Problem 4.3), the equiva-
lent resistance R is found to be

111 RiR
—=— 4 — or R=-—12

= — (4.30)
R Ry Ry R+ Ry

Example (Reducing a network) Let’s use the addition rules in Eqs. (4.29)
(b) and (4.30) to reduce the network shown in Fig. 4.16 to an equivalent single resis-
tor. As complicated as this network looks, it can be reduced, step by step, via
O_I\/\/\lg. 9 series or parallel combinations. We assume that every resistor in the circuit has
25Q the value 100 ohms.
Using the above rules, we can reduce the network as follows (you should ver-
§ c ify all of the following statements). A parallel combination of two 100 ohm resis-
o
v

tors is equivalent to 50 ohms. So in the first figure, the top two circled sections
are each equivalent to 150 ohms, and the bottom one is equivalent to 50 ohms.
In the second figure, the top and bottom circled sections are then equivalent to
B, g 160 ohms and 150 ohms. In the third figure, the circled section is then equivalent

60 Q to 77.4 ohms. The whole circuit is therefore equivalent to 100+ 77.4 4 150 =
327.4 ohms.

160 Q

1200 A; Although Egs. (4.29) and (4.30) are sufficient to handle the compli-

© cated circuit in Fig. 4.16, the simple network of Fig. 4.17 cannot be so
reduced, so a more general method is required (see Exercise 4.44). Any

YW\ l conceivable network of resistors in which a constant current is flowing

65Q has to satisfy these conditions (the first is Ohm’s law, the second and

third are known as Kirchhoff’s rules):

) (1) The current through each element must equal the voltage across that
A element divided by the resistance of the element.

57.6 Q
Figure 4.13.

Some resistors connected together (a); the circuit diagram (b); and the
equivalent resistance between certain pairs of terminals (c) and (d).




4.8 Energy dissipation in current flow

207

(2) At a node of the network, a point where three or more connecting
wires meet, the algebraic sum of the currents into the node must be
zero. (This is our old charge-conservation condition, Eq. (4.8), in
circuit language.)

(3) The sum of the potential differences taken in order around a loop
of the network, a path beginning and ending at the same node, is
zero. (This is network language for the general property of the static
electric field: f E - ds = 0 for any closed path.)

The algebraic statement of these conditions for any network will
provide exactly the number of independent linear equations needed to
ensure that there is one and only one solution for the equivalent resis-
tance between two selected nodes. We assert this without proving it. It is
interesting to note that the structure of a DC network problem depends
only on the fopology of the network, that is, on those features of the dia-
gram of connections that are independent of any distortion of the lines of
the diagram. We will give an example of the use of the above three rules
in Section 4.10, after we have introduced the concept of electromotive
force.

A DC network of resistances is a linear system — the voltages and
currents are governed by a set of linear equations, the statements of the
conditions (1), (2), and (3). Therefore the superposition of different pos-
sible states of the network is also a possible state. Figure 4.18 shows
a section of a network with certain currents, I, I, ..., flowing in the
wires and certain potentials, V1, Va,. .., at the nodes. If some other set
of currents and potentials, say Ii, e, V{, ..., 1s another possible state of
affairs in this section of network, then so is the set (/] + 11), (V4
V}),.... These currents and voltages corresponding to the superposi-
tion will also satisfy the conditions (1), (2), and (3). Some general the-
orems about networks, interesting and useful to the electrical engineer,
are based on this. One such theorem is Thévenin’s theorem, discussed in
Section 4.10 and proved in Problem 4.13.

4.8 Energy dissipation in current flow

The flow of current in a resistor involves the dissipation of energy. If it
takes a force F to push a charge carrier along with average velocity v, any
agency that accomplishes this must do work at the rate F - v. If an electric
field E is driving the ion of charge ¢, then F = gE, and the rate at which
work is done is gE - v. The energy thus expended shows up eventually as
heat. In our model of ionic conduction, the way this comes about is quite
clear. The ion acquires some extra kinetic energy, as well as momentum,
between collisions. A collision, or at most a few collisions, redirects its
momentum at random but does not necessarily restore the kinetic energy
to normal. For that to happen the ion has to transfer kinetic energy to the
obstacle that deflects it. Suppose the charge carrier has a considerably
smaller mass than the neutral atom it collides with. The average transfer

o o

Figure 4.14.
Resistances in series.

RR
R, — R _iR2
R{+R,

O O

Figure 4.15.
Resistances in parallel.
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4.9 Electromotive force and the voltaic cell

The origin of the electromotive force in a direct-current circuit is some
mechanism that transports charge carriers in a direction opposite to that
in which the electric field is trying to move them. A Van de Graaff elec-
trostatic generator (Fig. 4.19) is an example on a large scale. With every-
thing running steadily, we find current in the external resistance flow-
ing in the direction of the electric field E, and energy being dissipated
there (appearing as heat) at the rate IV, or I”R. Inside the column of the
machine, too, there is a downward-directed electric field. Here charge
carriers can be moved against the field if they are stuck to a nonconduct-
ing belt. They are stuck so tightly that they can’t slide backward along the
belt in the generally downward electric field. (They can still be removed
from the belt by a much stronger field localized at the brush in the termi-
nal. We need not consider here the means for putting charge on and off
the belt near the pulleys.) The energy needed to pull the belt is supplied
from elsewhere — usually by an electric motor connected to a power line,
but it could be a gasoline engine, or even a person turning a crank. This
Van de Graaff generator is in effect a battery with an electromotive force,
under these conditions, of V( volts.

In ordinary batteries it is chemical energy that makes the charge car-
riers move through a region where the electric field opposes their motion.
That is, a positive charge carrier may move to a place of higher electric
potential if by so doing it can engage in a chemical reaction that will
yield more energy than it costs to climb the electrical hill.

To see how this works, let us examine one particular voltaic cell.
Voltaic cell is the generic name for a chemical source of electromotive
force. In the experiments of Galvani around 1790 the famous twitching
frogs® legs had signaled the chemical production of electric current. It
was Volta who proved that the source was not “animal electricity,” as
Galvani maintained, but the contact of dissimilar metals in the circuit.
Volta went on to construct the first battery, a stack of elementary cells,
each of which consisted of a zinc disk and a silver disk separated by
cardboard moistened with brine. The battery that powers your flashlight
comes in a tidier package, but the principle of operation is the same.
Several kinds of voltaic cells are in use, differing in their chemistry but
having common features: two electrodes of different material immersed
in an ionized fluid, or electrolyte.

As an example, we’ll describe the lead—sulfuric acid cell which is
the basic element of the automobile battery. This cell has the important
property that its operation is readily reversible. With a storage battery
made of such cells, which can be charged and discharged repeatedly,
energy can be stored and recovered electrically.

A fully charged lead—sulfuric acid cell has positive plates that hold
lead dioxide, PbOy, as a porous powder, and negative plates that hold
pure lead of a spongy texture. The mechanical framework, or grid, is
made of a lead alloy. All the positive plates are connected together and

Figure 4.18.
Currents and potentials at the nodes of a

network.

| (o ==,

Figure 4.19.

In the Van de Graaff generator, charge carriers
are mechanically transported in a direction
opposite to that in which the electric field would
move them.
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(a) Charged cell
External circuit

(b) Discharging cell

[ —»

Lead dioxide PbO,

S lead Pb
- pongy lea

Lead alloy grid
Sulfuric acid -
and water

0 a®

AN o

Figure 4.20.

A schematic diagram, not to scale, showing how
the lead—sulfuric acid cell works. The
electrolyte, sulfuric acid solution, permeates the
lead oxide granules in the positive plate and the
spongy lead in the negative plate. The potential
difference between the positive and negative
terminals is 2.1 V. With the external circuit
closed, chemical reactions proceed at the
solid-liquid interfaces in both plates, resulting in
the depletion of sulfuric acid in the electrolyte
and the transfer of electrons through the
external circuit from negative terminal to positive
terminal, which constitutes the current 1. To
recharge the cell, replace the load R by a source
with electromotive force greater than 2.1V, thus
forcing current to flow through the cell in the
opposite direction and reversing both reactions.

<> Bisulfate ion HSO
A Hydrogen ion H*

| Electrons to circuit |

\
Pb + HSO; — PbSO,+ H" + 2¢~

PbO, + HSO] + 3H* + 2¢- — PbSO,+2H,0
/

| Electrons from circuit |

to the positive terminal of the cell. The negative plates, likewise con-
nected, are interleaved with the positive plates, with a small separation.
The schematic diagram in Fig. 4.20 shows only a small portion of a
positive and a negative plate. The sulfuric acid electrolyte fills the cell,
including the interstices of the active material, the porosity of which pro-
vides a large surface area for chemical reaction.

The cell will remain indefinitely in this condition if there is no exter-
nal circuit connecting its terminals. The potential difference between its
terminals will be close to 2.1 volts. This open-circuit potential difference
is established ‘“automatically” by the chemical interaction of the con-
stituents. This is the electromotive force of the cell, for which the symbol
& will be used. Its value depends on the concentration of sulfuric acid
in the electrolyte, but not at all on the size, number, or separation of
the plates.

Now connect the cell’s terminals through an external circuit with
resistance R. If R is not too small, the potential difference V between the
cell terminals will drop only a little below its open-circuit value £, and
a current / = V/R will flow around the circuit (Fig. 4.20(b)). Electrons
flow into the positive terminal; other electrons flow out of the negative
terminal. At each electrode chemical reactions are proceeding, the over-
all effect of which is to convert lead, lead dioxide, and sulfuric acid into
lead sulfate and water. For every molecule of lead sulfate thus made,
one charge e is passed around the circuit and an amount of energy e€ is
released. Of this energy the amount eV appears as heat in the external
resistance R. The difference between £ and V is caused by the resistance
of the electrolyte itself, through which the current / must flow inside the
cell. If we represent this internal resistance by R;, the system can be quite
well described by the equivalent circuit in Fig. 4.21.
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As discharge goes on and the electrolyte becomes more diluted with
water, the electromotive force £ decreases somewhat. Normally, the cell
is considered discharged when £ has fallen below 1.75 volts. To recharge
the cell, current must be forced around the circuit in the opposite direc-
tion by connecting a voltage source greater than £ across the cell’s termi-
nals. The chemical reactions then run backward until all the lead sulfate
is turned back into lead dioxide and lead. The investment of energy in
charging the cell is somewhat more than the cell will yield on discharge,
for the internal resistance R; causes a power loss I?R; whichever way the
current is flowing.

Note in Fig. 4.20(b) that the current / in the electrolyte is produced
by a net drift of positive ions toward the positive plate. Evidently the
electric field in the electrolyte points toward, not away from, the positive
plate. Nevertheless, the line integral of E around the whole circuit is
zero, as it must be for any electrostatic field. The explanation is this:
there are two very steep jumps in potential at the interface of the positive
plate and the electrolyte and at the interface of the negative plate and the
electrolyte. That is where the ions are moved against a strong electric
field by forces arising in the chemical reactions. It is this region that
corresponds to the belt in a Van de Graaff generator.

Every kind of voltaic cell has its characteristic electromotive force,
falling generally in the range of 1 to 3 volts. The energy involved, per
molecule, in any chemical reaction is essentially the gain or loss in the
transfer of an outer electron from one atom to a different atom. That
is never more than a few electron-volts. We can be pretty sure that no
one is going to invent a voltaic cell with a 12 volt electromotive force.
The 12 volt automobile battery consists of six separate lead—sulfuric acid
cells connected in series. For more discussion of how batteries work,
including a helpful analogy, see Roberts (1983).

Example (Lead-acid battery) A 12V lead—acid storage battery with a 20
ampere-hour capacity rating has a mass of 10 kg.

(a) How many kilograms of lead sulfate are formed when this battery is dis-
charged? (The molecular weight of PbSOy is 303.)

(b) How many kilograms of batteries of this type would be required to store the
energy derived from 1 kg of gasoline by an engine of 20 percent efficiency?
(The heat of combustion of gasoline is 4.5 - 107 J/kg.)

Solution

(a) The total charge transferred in 20 ampere-hours is (20 C/s)(3600s) =
72,000 C. From Fig. 4.20(b), the creation of two electrons is associated with
the creation of one molecule of PbSO,. But also the absorption of two elec-
trons is associated with the creation of another molecule of PbSOy4. So the
travel of two electrons around the circuit is associated with the creation of
two molecules of PbSOy4. The ratio is thus 1 to 1. The charge transferred
per mole of PbSQy is therefore (6-1023)(1.6- 10719 C) = 96,000 C. The

()

(b) I
£
1=
R; R+R.
1% § R
+ _|_ P V=E-IR;
Figure 4.21.

(a) The equivalent circuit for a voltaic cell is
simply a resistance R; in series with an
electromotive force £ of fixed value.

(b) Calculation of the current in a circuit
containing a voltaic cell.
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Figure 4.22.

A network with two voltage sources.

above charge of 72,000 C therefore corresponds to 3/4 of a mole. Since
each mole has a mass of 0.303 kg, the desired mass is about 0.23 kg.

(b) At 12V, the energy output associated with a charge of 72,000C is
(12J/C)(72,000C) = 864,000J. Also, 1 kg of gasoline burned at 20 per-
cent efficiency yields an energy of (0.2)(1kg)(4.5- 1077 /kg) =9- 10°7.
This is equivalent to (9 - 100 J)/(8.64 - 10° J) = 10.4 batteries. Since each
battery has a mass of 10 kg, this corresponds to 104 kg of batteries.

4.10 Networks with voltage sources
4.10.1 Applying Kirchhoff’s rules

A network of resistors could contain more than one electromotive force,
or voltage source. Consider the following example.

Example The circuit in Fig. 4.22 contains two batteries with electromotive
force £ and &, respectively. In each of the conventional battery symbols shown,
the longer line indicates the positive terminal. Assume that R includes the inter-
nal resistance of one battery, Ry that of the other. Supposing the resistances
given, what are the currents in this network?

Solution Having assigned directions arbitrarily to the currents 1, I5, and I3 in
the branches, we can impose the requirements stated in Section 4.7. We have one
node and two loops, " so we obtain three independent Kirchhoff equations:

I —1hb—13 =0,
&1 — R} —R313 =0,
&+ Ryl — Ryl = 0. (4.32)

To check the signs, note that in writing the two loop equations, we have gone
around each loop in the direction current would flow from the battery in that
loop. The three equations can be solved for /1, I, and /3. This is slightly messy
by hand, but trivial if we use a computer; the result is

I = E1Ry + E1R3 + ER3 ’
R{R> + RyR3 + R1R3
ORI+ ER3+E1R;
27 RiRy + RyR3 + RiR3’
B E1Ry — &Ry
- RiRy + RoR3 + R{R3~

I (4.33)
If in a particular case the value of /3 turns out to be negative, it simply means
that the current in that branch flows opposite to the direction we had assigned to
positive current.

15 There are actually two nodes, of course, but they give the same information. And there
is technically a third loop around the whole network, but the resulting equation is the
sum of the two other loop equations.
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Alternatively, we can use the “loop” currents shown in Fig. 4.23. The advan-
tages of this method are that (1) the “node” condition in Section 4.7 is automat-
ically satisfied, because whatever current goes into a node also comes out, by
construction; and (2) there are only two unknowns to solve for instead of three
(although to be fair, the first of the equations in Eq. (4.32) is trivial). The disad-
vantage is that if we want to find the current in the middle branch (/3 above), we
need to take the difference of the loop currents /1 and /5, because with the sign
conventions chosen, these currents pass in opposite directions through R3. But
this is not much of a burden. The two loop equations are now

&1 =R} —=R3(I} = 1) =0,
& —R3(p —11) — RyIp = 0. (4.34)
Of course, these two equations are just the second two equations in Eq. (4.32),

with I3 = I} — I, substituted in from the first equation. So we obtain the same
values of /1 and /> (and hence I3).

The calculational difference between the two methods in the above
example was inconsequential. But in larger networks the second method
is often more tractable, because it involves simply writing down a loop
equation for every loop you see on the page. This tells you right away
how many unknowns (the loop currents) there are. In either case, all of
the physics is contained in the equations representing the rules given
in Section 4.7. The hardest thing about these equations is making sure
all the signs are correct. The actual process of solving them is easy if
you use a computer. A larger network is technically no more difficult to
solve than a smaller one. The only difference is that the larger network
takes more time, because it takes longer to write down the equations
(which are all of the same general sort) and then type them into the com-
puter.

4.10.2 Thévenin’s theorem
Suppose that a network such as the one in Fig. 4.22 forms part of some
larger system, to which it is connected at two of its nodes. For exam-
ple, let us connect wires to the two nodes A and B and enclose the rest
in a “black box” with these two wires as the only external terminals, as
in Fig. 4.24(a). A general theorem called Thévenin’s theorem assures us
that this two-terminal box is completely equivalent, in its behavior in any
other circuit to which it may be connected, to a single voltage source Eeq
(“eq” for equivalent) with an internal resistance Req. This holds for any
network of voltage sources and resistors, no matter how complicated. It
is not immediately obvious that such an &4 and Req should exist (see
Problem 4.13 for a proof), but assuming they do exist, their values can be
determined by either experimental measurements or theoretical calcula-
tions, in the following ways.

If we don’t know what is in the box, we can determine qq and Req
experimentally by two measurements.

T 1°

Figure 4.23.

Loop currents for use in Kirchhoff’s rules. Loop
currents automatically satisfy the node
condition.

| |
| |
| A !
: <L
I R, [
| Ry & |
| |
T |
| |
| B |
| |
1
is
equivalent
(b) to
r———————————— — — = Ll
|
|
|
Req —IO

Figure 4.24.

Make Req equal to the resistance that would be
measured between the terminals in (a) if all
electromotive forces were zero. Make Egq equal
to the voltage observed between the terminals
in (a) with the external circuit open. Then the
circuit in (b) is equivalent to the circuit in (a).
You can't tell the difference by any direct-current
measurement at those terminals.
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Figure 4.25.
Find Egq and Req for this circuit.

@

A

Ry

Figure 4.26.
Loop currents for use in Kirchhoff’s rules.

e Measure the open-circuit voltage between the terminals by connect-
ing them via a voltmeter that draws negligible current. (The “infinite”
resistance of the voltmeter means that the terminals are effectively
unconnected; hence the name “open circuit.”) This voltage equals Eq.
This is clear from Fig. 4.24(b); if essentially zero current flows through
this simple circuit, then there is zero voltage drop across the resistor
Req. So the measured voltage equals all of the Eeq.

e Measure the short-circuit current I between the terminals by con-
necting them via an ammeter with negligible resistance. (The “zero”
resistance of the ammeter means that the terminals are effectively con-
nected by a short circuit.) Ohm’s law for the short-circuited circuit in
Fig. 4.24(b) then yields simply eq = IscReq. The equivalent resistance
is therefore given by

&
Req = f (4.35)
If we do know what is in the box, we can determine eq and Req by
calculating them instead of measuring them.

e For &, calculate the open circuit voltage between the two terminals
(with nothing connected to them outside the box). In the above exam-
ple, this is just I3R3, with I3 given by Eq. (4.33).

e For Req, connect the terminals by a wire with zero resistance, and cal-
culate the short-circuit current /. through this wire; Req is then given
by Eeq/lsc. See Problem 4.14 for how this works in the above exam-
ple. There is, however, a second method for calculating Req, which
is generally much quicker: Req is the resistance that would be meas-
ured between the two terminals with all the internal electromotive
forces made zero. In our example that would be the resistance of Ry,
R>, and R3 all in parallel, which is R{R2R3/(R1R> + RoR3 + R1R3).
The reason why this method works is explained in the solution to
Problem 4.13.

Example

(a) Find the Thévenin equivalent E¢q and Req for the circuit shown in Fig. 4.25.
(b) Calculate £eq and Req again, but now do it the long way. Use Kirchhoff’s
rules to find the current passing through the bottom branch of the circuit in
Fig. 4.26, and then interpret your result in a way that gives you £eq and Req.

Solution

(a) &eq is the open-circuit voltage. With nothing connected to the terminals,
the current running around the loop is £/3R. The voltage drop across the
R resistor is therefore (£/3R)(R) = £/3. But this is also the open-circuit
voltage between the two terminals, so &eq = £/3.
We can find Req in two ways. The quick way is to calculate the resistance
between the terminals with £ set equal to zero. In that case we have an R
and a 2R in parallel, so Req = 2R/3.
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Alternatively, we can find Req by calculating the short-circuit current
between the terminals. With the short circuit present, no current takes the
route through the R resistor, so we just have £ and 2R in series. The short-
circuit current between the terminals is therefore Isc = £/2R. The equiva-
lent resistance is then given by Req = Eeq/Isc = (£/3)/(E/2R) = 2R/3. 2R/3 &3
(b) The loop equations for the circuit in Fig. 4.26 are ’V\/\, II
0=¢&—-R(U) — L) — 2R,
0=Vy—R(Ur, —11) — Rol». (4.36)
O O
Solving these equations for /I, gives I = (£ + 3V()/(2R + 3Rp) (as you
can check), which can be written suggestively as
& 2R
Vo + 3= I <Ro + ?> . (4.37) I; ’\/\/\,
VO RO
But this is exactly the V = IR statement that we would write down for )
the circuit shown in Fig. 4.27, where the total emf is V + £/3 and the ~Figure 4.27. ) o
total resistance is Ry + 2R/3. Since the result in Eq. (4.37) holds for any The Thévenin equivalent circuit.
values of V() and R, we conclude that the given circuit is equivalent to an
emf &q = £/3 in series with a resistor Req = 2R/3. Generalizing this 9
method is the basic idea behind the first proof of Thévenin’s theorem given l
in Problem 4.13. y |
In analyzing a complicated circuit it sometimes helps to replace a
two-terminal section by its equivalent £eq and Req. Thévenin’s theorem '\/\/\/
assumes the linearity of all circuit elements, including the reversibility R
of currents through batteries. If one of our batteries is a nonrechargeable
dry cell with the current through it backward, caution is advisable! 0
4.11 Variable currents in capacitors and resistors
Let a capacitor of capacitance C be charged to some potential V() and then i
discharged by suddenly connecting it across a resistance R. Figure 4.28 ke _». [
shows the capacitor indicated by the conventional symbol ‘I I', the resis-
tor R, and a switch which we shall imagine to be closed at time t = 0.
It is obvious that, as current flows, the capacitor will gradually lose its I
charge, the voltage across the capacitor will diminish, and this in turn
will lessen the flow of current. Let’s be quantitative about this.

Example (RC circuit) In the circuit in Fig. 4.28, what are the charge Q on
the capacitor and the current / in the circuit, as functions of time?

Solution To find Q(r) and I(¢) we need only write down the conditions that
govern the circuit. Let V(¢) be the potential difference between the plates, which
is also the voltage across the resistor R. Let the current / be considered positive

\ p—

Switch closed

Figure 4.28.
Charge and current in an RC circuit. Both
quantities decay by the factor 1/e in time RC.
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if it flows away from the positive side of the capacitor. The quantities Q, 1, and
V, all functions of the time, must be related as follows:
14 a0

=CV, [=—, ==
0 dt

R I. (4.38)

Eliminating / and V, we obtain the equation that governs the time variation of Q:

Y 0
Writing this in the form
dQ dt
we can integrate both sides, obtaining
—1
InQ = RC + const. (4.41)
The solution of our differential equation is therefore
Q = (another constant) - eH/RC (4.42)

IfV=Vyattr =0, then Q = CVj at t = 0. This determines the constant, and
we now have the exact behavior of Q after the switch is closed:

0(t) = CVye '/RC. (4.43)

The behavior of the current / is found directly from this:

_ 40 _ Vo ke
I(r) = 7 - R e . (4.44)
And the voltage at any time is V(r) = I(¢)R, or alternatively V(r) = Q(r)/C.

At the closing of the switch the current rises at once to the value Vj/R
and then decays exponentially to zero. The time that characterizes this decay
is the constant RC in the above exponents. People often speak of the “RC
time constant” associated with a circuit or part of a circuit. Let’s double
check that RC does indeed have units of time. In SI units, R is measured
in ohms, which from Eq. (4.18) is given by volt/ampere. And C is measured
in farads, which from Eq. (3.8) is given by coulomb/volt. So RC has units
of coulomb/ampere, which is a second, as desired. If we make the circuit in
Fig. 4.28 out of a 0.05 microfarad capacitor and a 5 megohm resistor, both
of which are reasonable objects to find around any laboratory, we would have
RC = (5-10° 0hm)(0.05 - 10~ farad) = 0.25ss.

Quite generally, in any electrical system made up of charged con-
ductors and resistive current paths, one time scale — perhaps not the only
one — for processes in the system is set by some resistance—capacitance
product. This has a bearing on our earlier observation on page 187 that
€op has the dimensions of time. Imagine a capacitor with plates of area
A and separation s. Its capacitance C is €pA/s. Now imagine the space
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between the plates suddenly filled with a conductive medium of resis-
tivity p. To avoid any question of how this might affect the capaci-
tance, let us suppose that the medium is a very slightly ionized gas; a
substance of that density will hardly affect the capacitance at all. This
new conductive path will discharge the capacitor as effectively as did
the external resistor in Fig. 4.28. How quickly will this happen? From
Eq. (4.17) the resistance of the path, R, is ps/A. Hence the time constant
RC 1is just (ps/A)(epA/s) = €gp. For example, if our weakly ionized
gas had a resistivity of 10® ohm-meter, the time constant for discharge of
the capacitor would be (recalling the units of €y and the ohm) €pp =
(8.85-10712C%s2 kg~ m™3)(10°kgm> C~2s~!) ~ 10 microseconds.
It does not depend on the size or shape of the capacitor.

What we have here is simply the time constant for the relaxation
of an electric field in a conducting medium by redistribution of charge.
We really don’t need the capacitor plates to describe it. Imagine that
we could suddenly imbed two sheets of charge, a negative sheet and a
positive sheet, opposite one another in a conductor — for instance, in
an n-type semiconductor (Fig. 4.29(a)). What will make these charges
disappear? Do negative charge carriers move from the sheet on the left
across the intervening space, neutralizing the positive charges when they
arrive at the sheet on the right? Surely not — if that were the process,
the time required would be proportional to the distance between the
sheets. What happens instead is this. The entire population of nega-
tive charge carriers that fills the space between the sheets is caused to
move by the electric field. Only a very slight displacement of this cloud
of charge suffices to remove excess negative charge on the left, while
providing on the right the extra negative charge needed to neutralize
the positive sheet, as indicated in Fig. 4.29(b). Within a conductor, in
other words, neutrality is restored by a small readjustment of the entire
charge distribution, not by a few charge carriers moving a long dis-
tance. That is why the relaxation time can be independent of the size
of the system.

For a metal with resistivity typically 10~/ ohm-meter, the time con-
stant €gp is about 10~ 18 g, orders of magnitude shorter than the mean
free time of a conduction electron in the metal. As a relaxation time this
makes no sense. Our theory, at this stage, can tell us nothing about events
on a time scale as short as that.

4.12 Applications

The transatlantic telegraph cable (see Exercise 4.22) extended about
2000 miles between Newfoundland and Ireland, and was the most expen-
sive and involved electrical engineering project of its time. After many
failures, interrupted by a very short-lived success in 1858, it was finally
completed in 1866. The initial failures were due partly to the fact that
there didn’t exist a consistent set of electrical units, in particular a unit
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Figure 4.29.

In a conducting medium, here represented by
an n-type conductor, two fixed sheets of charge,
one negative and one positive, can be
neutralized by a slight motion of the entire block
of mobile charge carriers lying between them.
(a) Before the block of negative charge has
moved. (b) After the net charge density has
been reduced to zero at each sheet.



